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Abstract
The Landauer formula for dissipationless conductance lies at the heart of
modern electronic transport, yet it remains without a clear microscopic basis.
We analyse the Landauer formula microscopically and give a straightforward
quantum kinetic derivation for open systems. Some important experimental
implications follow. These lie beyond the Landauer result as popularly received.

In 1957 Rolf Landauer published a prescient interpretation of metallic resistivity [1]. It
heralded one of the most dramatic predictions of modern condensed-matter physics: the
perfect quantization, in steps of 2e2/h, of electrical conductance in one-dimensional metallic
channels [2]. Such quantization is quite independent of the material properties of the contact
and of its leads. It is universal insofar as one may validly neglect the disruptive influences of
inelastic dissipation within the transport process.

Landauer argued that the current, not the applied electromotive voltage, should be
understood as the active probe by which a device reveals its conductance. The observed carrier
flux is understood as a kind of diffusive flow, tending to shift carriers from a ‘high’- to a ‘low’-
density reservoir (lead). In the mesoscopic realm, this flow between leads is conditioned by the
intervening device channel, which presents a quantum tunnelling barrier to the non-interacting
electrons making up the flux.

The Landauer formula then has two cardinal tenets:

(i) current is the flow of independent and degenerate electrons as they follow a nominal
density gradient across reservoirs, and

(ii) conductance is lossless transmission through an interposed quantum barrier.

These underpin Landauer’s assumptions, namely that

(a) transport ensues when a pair of leads connected to the device are set to different chemical
potentials µL, µR;
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(b) the density mismatch due to µL − µR sustains the current;
(c) µL − µR is the applied voltage across the device;
(d) the Fermi energy is much larger than the thermal and electrical energies; and
(e) there are no inelastic processes to dissipate the electrical energy gained by the electrons.

Energy dissipation does not appear in the classic Landauer derivation [1, 3]. For a sample
of mesoscopic dimensions, the model admits only elastic barrier scattering and excludes any
role for inelastic processes within the active device and its interfaces. Yet it is dissipative
inelastic scattering, and that alone, which ensures the energetic stability of resistive transport
and hence a steady state for conduction.

Finite conductance and electrical energy loss are indivisible phenomena. The fundamental
expression of their basic inseparability is the fluctuation-dissipation relation [4]. This
establishes the equivalence of the mean-square fluctuation strength for the current and the
conductance coefficient G in the energy dissipation rate P = GV 2, where V is the applied
voltage.

There is a missing link between Landauer’s universal—and lossless—conductance
formula, which has been critical in the development of mesoscopic science [3], and the
dissipative inelastic processes that are absolutely vital to the microscopic origin of resistance.
Repeated attempts have been made to obtain the Landauer formula from microscopic-
like arguments [2, 5, 6]; see also [7]. However, a convincing resolution has not yet
materialized [8, 9]. The absence of so crucial a connection is a puzzling theoretical conundrum
for Landauer’s approach to mesoscopics, which is otherwise so empirically compelling.

In this letter we answer the question: how can the Landauer formula, in seemingly
bypassing all inelastic processes, predict a finite—invariably dissipative—conductance
that fulfils the fluctuation-dissipation theorem (FDT)? Below we offer a straightforward
microscopic interpretation of Landauer’s result for a mesoscopic contact open to the
macroscopic environment.

Our treatment differs from all earlier attempts by directly addressing the essential physics
of dissipation. To obtain conductance quantization within an open contact, the explicit interplay
of elastic and dissipative processes is necessary and sufficient. Neglect of either mechanism,
in favour of the other, negates the formula’s microscopic basis. Both kinds of scattering are
needed.

We also show that the traditional Landauer assumptions of pseudo-diffusive current and
lossless scattering are not required in a first-principles analysis of Landauer conductance.
Our model relies solely upon orthodox quantum kinetics, as embodied in the microscopic
Kubo–Greenwood (KG) formalism [10, 11]. The KG formulation automatically guarantees
the FDT; it is not invoked as an additional hypothesis. Both dissipative and lossless scattering
appear within the resulting fluctuation-dissipation relation and both are assigned equalphysical
importance.

First, we briefly recall the KG formula and the essential charge conservation built into it.
Next we discuss the form of the KG relaxation time, which fixes the conductance. Finally,
we show how the physical constraints on a one-dimensional open ballistic channel, connected
to macroscopic leads, lead naturally to Landauer’s ideal quantized conductance. We go on to
examine some of the measurable effects of device non-ideality on the Landauer conductance.

The KG theory [10, 11] describes the carriers’ full many-body density matrix. All of
the transport and fluctuation properties are contained within it. Thus, the conductivity for the
system appears as the trace of the current–current correlation function:

σ(t) = ne2

m∗

∫ t

0
Cvv(t) dt . (1)
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Here n is the carrier density and m∗ is the effective mass. The velocity auto-correlation has
the canonical form

Cvv(t) = 〈[v(t), v(0)]〉
〈v(0)2〉 ∼ exp(−t/τm) (2)

where the expectations trace over the equilibrium density matrix (this gives the leading, linear
term in the expansion of the non-equilibrium response). For long times, the characteristic
relaxation rate 1/τm yields the dominant decay of the correlation.

The asymptotic relaxation rate subsumes, on an equal footing, the microscopic
contribution from every physically relevant collision mechanism. Moving now to the long-time
form of equation (1), the conductivity becomes

σ → ne2τm

m∗ . (3)

This is the celebrated Drude formula.
Equation (1) embodies the fluctuation-dissipation relation. In addition, its KG structure

ensures that charge conservation is rigidly satisfied in the large, as well as locally [8]. This is
an absolute prerequisite for open conductors as they exchange carriers freely with the outside.

Since Landauer’s classic result applies to transport in a one-dimensional metallic wire, we
examine equation (3) in one dimension (1D) for a single metallic sub-band (channel) within
the wire. In the degenerate limit the density is n = 2kF/π in terms of the Fermi wavenumber
kF. The conductance over a sample of length L becomes

G ≡ σ

L
= 2kFe2

π Lm∗ τm = 2e2

h

(
2h̄kF

Lm∗ τm

)
≡ 2e2

h
TKG, (4)

in which the transmission coefficient TKG = 2vFτm/L is proportional to the ratio of the overall
scattering length, vFτm , to the operational length of the system.

Crucially, the many-body collisions (phonon emission, Coulomb scattering, etc) that
redistribute the carriers’ energy gain and cause dissipation are incorporated in τm alongside
elastic impurity and barrier scattering. While elastic effects are explicitly invoked by the
Landauer model, dissipative ones are neglected. It is dissipation that stabilizes the transport
and substantiates the fluctuation-dissipation relation, equation (1).

Equation (4) is fully consistent with the Landauer formula, which is identical to it except
that, in the accepted treatment, its transmission parameter T is ideal: T = 1. In cases where
T is not ideal the Landauer picture assumes that the non-ideality is due solely to elastic back-
scattering from the barrier but does not facilitate the actual computation of T . When inelastic
scattering dominates, this picture is inapplicable [12].

Let us take a simple model for TKG. The wire is ballistic (impurity-free) and it is uniform;
by Poisson’s equation, so are the driving field and carrier distribution set up within it. At a
distance L apart lie the wire–lead interfaces where the current is, in effect, injected and extracted
by an outside generator. We observe that L is not a lithographically precise dimension. It
characterizes the maximum physical scale for any collision process to occur in the entire
mesoscopic assembly (the open wire, the interfaces and the reservoirs are one whole system).
Note also that it is the external supply and removal of the current that explicitly energizes the
open system [8]. There is no appeal in equation (1) to chemical-potential differences in any
way, shape or form.

The wire–reservoir interfaces are zones of strong elastic scattering with impurities in the
leads (the relaxation time is τel); equally, they are sites for strong dissipative interactions with
the background modes excited by the influx and efflux of carriers from the current source
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(the relaxation time is τin). The scattering mechanisms are stochastically independent, so that
Matthiessen’s rule applies:

1

τm
= 1

τel
+

1

τin
. (5)

The mean free path (MFP) associated with the elastic collisions is obviously L, since by
hypothesis that is the operational size of our impurity-free wire. Therefore τel = L/vF for
carriers at the Fermi level. By the same token, the MFP for inelastic scattering cannot be
greater than L, though it may well be less at high currents2. Then

τin � τel = L/vF. (6)

We conclude that

TKG = 2vF

L

(
τelτin

τel + τin

)
= 2τin

τin + L/vF
� 1. (7)

It is the direct competition between the elastic processes in the mesoscopic system (as a
ballistic structure, its elastic MFP is also its characteristic length) and the dissipative processes
(ideally restricted to the current injection/extraction areas bounding L, but also liable to intrude
into the interior) that determines the physical, and measurable, transmission through the sample.

What is the optimum outcome for equation (7) and what does it yield for the conductance?
The maximum value of TKG is unity and it is attained precisely when

τin = τel = L/vF. (8)

In other words, no inelastic events intrude into the core of the wire; they all occur at the
interfaces. From equation (4) one easily discerns the corresponding value of G for this open,
maximally ballistic 1D wire. It is nothing other than the Landauer conductance G0 = 2e2/h.

This establishes our key result. As with Landauer’s derivation, we base it on two
hypotheses:

(i) that the wire is uniform, and
(ii) that its 1D conduction sub-bands are well enough separated in energy that each can be

treated independently.

Our account of the Landauer formula makes no use at all of the three other assumptions
that are traditionally relied upon to establish the formula. They are:

• that a mesoscopic current flows only when there is a density mismatch between carrier
reservoirs, held at different chemical potentials,

• that coherent elastic scattering is the exclusive transmission mechanism mediating the
conductance,

• that dissipation in an open conductor (accepted as vital in order to save the FDT) is a
remote effect deep in the reservoirs, of no physical consequence for transport.

We have demonstrated that these assumptions are superfluous in obtaining Landauer’s
result. A fourth key assumption remains:

• that the quantized-conductance formula requires linear response in a degenerate channel.

2 In a ‘diffusive’ wire, containing many elastic scattering centres, the complementary scenario holds: the wire length
L represents a maximum scale for inelastic scattering, so that τel < τin � L/vF.
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We now show that this hypothesis too is not required for understanding the microscopic
basis of mesoscopic conductance.

A standard kinetic approach suffices to describe the carriers in a ballistic and uniform 1D
conductor [13]. In steady state, with a driving field E (to be determined), our model carrier
distribution function fk in wavevector space {k} obeys the transport equation

eE

h̄

∂ fk

∂k
= − 1

τin(εk)

(
fk − 〈τ−1

in f 〉
〈τ−1

in f eq〉 f eq
k

)
− 1

τel(εk)

fk − f−k

2
. (9)

The scattering times τin(εk) and τel(εk) are in general dependent on the band energy εk .
The properties of equation (9) impact directly upon the measurable transport behaviour.

First, one and only one chemical potential µ enters the problem via the equilibrium Fermi–
Dirac distribution at temperature T :

f eq
k = 1/{1 + exp[(εk + εi − µ)/kBT ]}.

Quite generally, this is the reference state for computing the non-equilibrium function fk [14]
(here εi is the energy threshold of the sub-band). The applicability of equation (9) stretches
over the entire range of density n = 〈 f 〉 from classical to strongly degenerate.

Second, the kinetic equation is microscopically conserving. On the right-hand side of
equation (9), the leading, inelastic, collision term has a restoring contribution proportional to
the expectation

〈τ−1
in f 〉 =

∫ ∞

−∞
2dk

2π
τ−1

in (εk) fk .

Finally, the second term on the right of equation (9) represents the elastic collisions, acting to
restore symmetry to fk . Both the elastic and inelastic terms satisfy gauge invariance.

The transport equation is analytically solvable when the collision times are independent
of the electronic band energy [13]. At low currents, the solution has a transport behaviour
identical to the KG formula described above. At high currents, for which neither the KG nor
the Landauer expressions strictly apply, the kinetic solution remains tractable.

We now obtain G. As we have recalled, the common derivation of the Landauer
conductance posits a highly degenerate electronic sub-band [3]. That is, we are in the zero-
temperature limit. If the sub-band is populated even vestigially, the ideal conductance G = G0

always emerges; but if the band is empty (the only other possibility at zero temperature), there
is no transport and G = 0. There is no room for the intermediate band-threshold state that is
expected at finite temperature.

The above approach cannot be used in a realistic setting, where the Fermi energy may
well match the thermal energy. Experimentally [15, 16], the carrier density in a 1D channel is
controlled via an adjacent gate. As the gate-bias voltage becomes more positive, the electron
population undergoes a continuous change, from a low-density classical regime to a high-
density degenerate one.

This classical-to-quantum transition is readily accommodated. Classically, the elastic
MFP no longer scales with the Fermi velocity, but with the thermal velocity vth = √

2kBT/m∗.
In the general case, τel is given by the expression

τel(n, T ) = L

v̄(n, T )
≡ L

n

〈|v| f eq〉 . (10)

For a sparse, classical channel population, the characteristic mean velocity v̄(n, T ) goes to
vth. For a dense, and thus degenerate, population, v̄ = vF = √

2(µ − εi)/m∗, which holds
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Figure 1. Conductance of a one-dimensional ballistic wire, computed with the kinetic model of
equation (9). We show G scaled to the Landauer quantum G0, as a function of chemical potential
µ in units of thermal energy. G exhibits strong shoulders as µ successively crosses the sub-band-
energy thresholds set at ε1 = 5 kBT and ε2 = 17 kBT . Well above each threshold, sub-band
electrons are strongly degenerate and the conductance tends to a well-defined quantized plateau;
well below each threshold, the population and its contribution to G vanish as exp[−(εi −µ)/kBT ].
Full curve: G in a ballistic channel. This is the ideal limit for which the collision-time ratio τin/τel
is unity. Chain curve: non-ideal case for τin/τel = 0.75. Note how the increased inelastic scattering
brings down the plateaux. Dotted curve: the case of τin/τel = 0.5. The departure from ideality is
now pronounced.

for equation (7) above. We can then extend equations (4) and (8) for G and TKG to the whole
regime of densities ni in the i th sub-band accessible at finite temperature:

Gi = G0

(
hni

2m∗v̄(ni , T )

)(
1 − 1

1 + τin/τel(ni , T )

)
, (11)

where vF is replaced with its equivalent expression in 1D: vF = h̄kF/m∗ = hni/4m∗.
When the system is at low density (µ − εi 	 kBT ) the conductance vanishes with ni .

When the system is degenerate (µ − εi 
 kBT ) the conductance reaches a plateau, which is
ideally quantized when τin = τel. In between, it rises smoothly as the chemical potential and
density are systematically swept from far below the sub-band threshold εi to far above it.

The result is depicted in figure 1. We see there the total conductance of a 1D wire:

G =
∑

i

Gi ((µ − εi )/kBT ),

made up of its individual sub-band contributions computed from equation (11), with full
temperature dependence. The shoulders at the two sub-band thresholds are clear. In
an idealized scenario (recall equation (8)), the characteristic Landauer plateaux appear as
expected. As the inelastic scattering rate 1/τin progressively exceeds the elastic rate 1/τel

(always keyed to the operational length of the structure), it is also evident that there is a
progressive loss of ideality. Nonetheless the Landauer steps survive robustly,albeit at a reduced
height commensurate with the degree of inelasticity.

To date, non-ideal behaviour in G has been viewed practically as an experimental
nuisance, detracting from the aim of detecting the perfect Landauer prediction in ballistic
wires [15, 16]. On the contrary, we suggest that the observed deviations from the ideal, for
actual mesoscopic samples, carry valuable information on non-equilibrium transport effects.
That these departures can, and should, be probed systematically follows from the logic of the
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microscopic analysis presented above, supplemented with further detailed modelling of the
collision terms entering into equations (1) and (9).

Our results, obtained from the standard KG theory and, equally well, from the solution of a
standard kinetic equation, show how the Landauer conductance formula arises directly from a
fine-scale interplay of elastic and inelastic processes in one-dimensional ballistic conductors.
Such a derivation automatically respects charge conservation and the FDT. The latter is a
natural outcome of the analysis, not an additional hypothesis to be imposed ad hoc.

We have shown that the Landauer theory’s traditional phenomenological assumptions are
not required for the validity of the formula itself, provided the essential physics of resistive
energy dissipation is respected. Once the inelastic processes responsible for dissipation
are properly included, the scope and value of the Landauer conductance formula extend
well beyond Landauer’s original conception. A minimal set of assumptions, as befits any
microscopically based approach, is not only enough to recover the full Landauer formula; it
also reveals considerably more information.

Finally, one conclusion stands out. In a mesoscopic ballistic conductor open to its
electrical environment, the close interaction between dissipative and elastic scattering governs
the behaviour of the conductance. It does so uniquely. Neither of the collision modes, acting
alone, can sustain the physics of mesoscopic transport. A theory of transport must allow all
such processes to act in concert, as they do in nature.
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